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We investigated the region containing the three QTL peaks, sequen-
cing, in the mutant, amplimers of B1.2 kb at an average interval of
8.5 kb across the region. We found no polymorphisms unique to the
Rgs2 mutant; the Rgs2 mutant sequence was identical to that
of C57BL/6J from 0.5 to 2.95 Mb and identical to that of DBA/2
from 2.95 Mb onward. Mapping experiments identified no QTLs
segregating between C57BL/6J and DBA/2 in the region of
sequence difference8,28,33,34.

We tested for an interaction between Line and Cross at the Rgs2
locus by quantitative complementation, again using the EMO pheno-
type9 measured in 117 mice. On the basis of our mapping in the
heterogeneous stock and from sequence analysis of the QTL region, we
knew that C57BL/6J carried the high QTL allele and that either A/J or
C3H carried the low QTL allele8,10. We used C57BL/6J and C3H for
quantitative complementation, crossing both with the Rgs2 mutant
and with the wild type (C57BL/6J). The interaction between Line and
Cross was significant (P ¼ 0.009), implicating Rgs2 as a gene involved
in the QTL (Table 1).

Rgs2 modulates anxiety
If Rgs2 is the quantitative trait gene, then it should have a specific
pattern of action35 that affects both OFA and OFD, but in opposite
directions as increased anxiety is associated with lower activity and
higher defecation. The interaction coefficient should be positive for
OFA and negative for OFD. Furthermore, the interaction coefficient
for EMO should be larger than those for either OFA or OFD. The gene
should also affect other measures of anxiety. In the elevated plus maze,
we expected the interaction coefficient to be positive for number of
entries and time spent in the open arms of the maze. In another test of
novelty, the latency (or amount of time taken) to try a new food, the
interaction coefficient should be negative. Last, Rgs2 should not affect
activity measured in a nonthreatening environment, such as the
distance traveled in 30 min in a home cage (home cage activity).
Quantitative complementation of Rgs2 produced the expected pattern
of results (Table 1).

Because the control strain used in the complementation test is not
identical to the mutant strain, we needed to show that the results were

not due to unknown QTL next to Rgs2 that might have been
segregating between the DBA/2 and C57BL/6J haplotypes. We directly
tested this possibility with another quantitative complementation test
using DBA/2, rather than C3H, as the contrasting strain to C57BL/6J.
If a QTL segregates between these two strains at the Rgs2 locus, then
there should be a failure to complement. We found that the interac-
tion between strain and background was not significant: P ¼ 0.3 for
OFA, P ¼ 0.97 for OFD and P ¼ 0.48 for EMO. Furthermore, we did
not uncover any functional effect attributable to differences between
DBA/2 and C57BL/6J sequence variants in MF1 mice by comparing a
model in which a different genetic effect is allowed in each strain with
a model in which it is constrained by the strain distribution pattern of
the variant, so that strains sharing the same allele must have the same
genetic effect. These results indicate that the quantitative complemen-
tation result is not compromised by the use of C57BL/6J as a control
and that the effect is indeed specific to a small-effect QTL segregating
between C3H and C57BL/6J.

DISCUSSION
We report here the identification of a gene, Rgs2, underlying a small-
effect QTL that contributes to behavioral variation in the mouse. The
variance due to this QTL in the segregating cross is B5%, which is
typical for behavioral QTLs. Other information about the function of
Rgs2 is consistent with this finding. Rgs2 is widely expressed in the
brain36, and the Rgs2 mutation has an effect on behavior29. Compar-
ing the behavior of the homozygous Rgs2 mutant with that of C57BL/
6J mice indicates that the mutation makes mice more anxious (see
Supplementary Table 1 online). Regulators of G-protein signaling are
known to have a role in rapid behavioral changes37,38; their involve-
ment in modulating activity levels in the tests used here to measure
anxiety in rodents is consistent with these observations. In common
with other Rgs genes, Rgs2 affects a wide range of phenotypes
including hypertension39, immune response29 and implantation in
the womb40.

Although Rgs2 modulates anxiety in the mouse, the genetic data
indicate that it is only one component of the QTL. The position of one
QTL peak over Rgs2 (Fig. 1) suggests that the functional variant
interacting with Rgs2 is close to, or inside, the gene. The positions of
the other QTL peaks suggest that Rgs18 and Brinp3 are good
candidates for other components (Fig. 1), but confirmation is needed
because these peaks lie in intergenic regions, more than 100 kb from
the nearest known expressed sequence. We cannot rule out the
possibility that these peaks interact with Rgs2 as well. Although several
expressed sequence tags align to the genome sequence under the
second QTL peak, they probably do not represent protein-coding
genes because they have no homology to known protein-coding genes,
are not spliced and often contain long and short interspersed element
repeats. This observation is important, as it indicates that concentrat-
ing solely on known expressed sequences may result in missing
important loci.

The complexity of the architecture of the QTL is similar to that
reported elsewhere. Studies that isolate genetic effects in congenic and
recombinant inbred mouse lines often report that one relatively large
effect comprises several loci with much smaller effects41–44. In Droso-
phila melanogaster, four different fine-mapping QTL studies reported
a similar phenomenon45. Similar complexity will probably be found at
other QTLs.

This study establishes two new approaches to genetic mapping in
mice. First, we showed that it is possible to use commercially available
outbred mice to map small-effect QTLs with a high degree of precision
(to within a few hundred kilobases). This success was due to the

Table 1 Analysis of variance for quantitative complementation of the
Rgs2 mutant

Phenotype Line Mutant Wild-type

Interaction

coefficient P value

EMO High 0.987 0.162 0.838 0.009

Low "0.462 "0.448

OFA High 0.645 "0.147 0.803 0.029

Low "0.183 "0.172

OFD High "0.632 "0.238 "0.566 0.062

Low 0.483 0.311

EPM open-arm entries High 0.277 "0.363 0.900 0.017

Low "0.097 0.162

EPM open-arm time High 0.765 "0.218 0.700 0.049

Low "0.009 "0.291

Latency to eat new food High 0.064 0.021 "1.041 0.003

Low 0.653 "0.430

Home-cage activity High 0.746 0.487 0.259 0.964

Low "0.191 "0.703

For each phenotype, the mean trait values for the four combinations of Line (high
C57BL/6J versus low C3H/HeJ) and Cross (Rgs2 mutant versus C57BL/6J wild-type),
the Cross # Line interaction coefficient and its P value from the analysis of variance are
shown. EPM, elevated plus maze.
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To test whether our choice of strains was skewing the result, we also
analyzed the MF1 mice by using all eight heterogeneous stock
progenitors. Both analyses identified the same three peaks (Fig. 1).
The much lower significance levels of single-marker association map-
ping compared with HAPPY reflect the fact that the strain distribution
patterns (SDPs) of the SNPs need not coincide with the QTL allele
effects, as noted in previous analyses8,28. For example, if the SDP at the
functional variant is different from the SDPs of nearby SNP markers
(e.g., because it is not diallelic), then no marker is a good surrogate for
it. This problem is avoided by multipoint methods such as HAPPY,
which consider combinations of markers that induce new SDPs and
therefore might coincide with the SDP of the functional variant.

The QTL region has three independent effects
We next asked whether the three peaks were truly independent, as
linkage disequilibrium between markers might contribute to inter-
dependence between the peaks. We used our reconstruction of MF1
haplotypes from putative progenitor strains as an index of historical
recombination (Fig. 2). On average, 8.4 recombinants separate the
MF1 haplotypes from the progenitor haplotypes. The position of the
95% c.i. containing each QTL peak is shown in Figure 2, super-
imposed on the derivation of the common haplotypes. The haplotypes
cannot be reconstructed in such a way that an ancestral haplotype
spans all the peaks and no two peaks lie on the same progenitor strain
haplotype (Fig. 2), indicating that the peaks are probably indepen-
dent. We may not have correctly ascertained the founders, however,
and so our recombination estimates may be biased. Therefore, we
investigated the independence of the three effects by fitting them
simultaneously, testing the significance of each QTL peak in the
presence of the other two using partial F-tests. All three peaks
remained significant (logP ¼ 2.5, 11.9 and 3.3), suggesting that they
are independent and real effects, although the significance levels of the
first and third peaks were lower and the location estimated for the
third peak shifted slightly.
Figure 1 shows the relationship between the QTL peaks and known

genes in the region. The second and third QTL peaks are located in
a region devoid of known genes, although there are several expressed
sequences. Neither the human nor the mouse region was predicted
to encode any known microRNA sequences. The 95% c.i. of the
second peak, at 0.7 Mb, contains just two genes, Rgs2 and Rgs13
(regulator of G-protein signaling 2 and 13). Only Rgs2 lies completely
within a 95% c.i.

Quantitative complementation of Rgs2
On the basis of the MF1 fine-mapping data, Rgs2 is a strong candidate
gene. Therefore, we used quantitative complementation to test
whether Rgs2 interacts with a functional variant. The test uses four
strains: two that bear different QTL alleles (referred to here as high and
low lines), a strain bearing a recessive mutation of Rgs2 (m); and a
wild-type strain (+) that is ideally coisogenic with the mutant. We
determined phenotypes of mice with the four genotypes high/m,
low/m, high/+ and low/+ and analyzed them in an experiment with
two factors: ‘Cross’, representing the presence or absence of the
mutation, and ‘Line’, representing natural allelic variation at the
QTL. We suppose that the QTL exerts its effect by altering the
expression of the gene, as might be the case if it lies in the promoter
of the gene or in a more distant enhancer element. In this case, the two
effects, one due to the gene and one to the QTL, will not be
independent and their joint effect (a failure to complement) will be
detected as a significant interaction between Line (high or low) and
Cross (m or +) in the analysis of variance. The interaction coefficient
between Line and Cross is identical to the contrast (high/m – low/m) –
(high/+ – low/+) and measures the failure for the wild type to
complement the mutation on different backgrounds (low versus high).

We obtained a recessive mutation of Rgs2 suitable for the quanti-
tative complementation test, but because the Rgs2 mutant was made
on a 129/P2 strain and backcrossed to C57BL/6J29, obtaining a wild
type on a coisogenic background was difficult. But the genomes of
inbred strains of laboratory mice are closely related and can be
described as a mosaic structure of alternating segments of sequence
similarity and difference30–32. We reasoned that the problem of mixed
strain background might be overcome if we could show that the
genetic effect of any sequence variant in the mutant strain was identical
to its effect in C57BL/6J; in other words, even though the sequence
might not be identical, the two strains would carry the same QTLs.

We used genotyping data and sequence comparisons to determine
whether we could use C57BL/6J as the wild-type control for the
complementation test. Analysis of 98 microsatellite markers showed
that the genome of the mutant mouse is C57BL/6J, apart from a 37-Mb
region on chromosome 1 (between 113 Mb to 150 Mb on the National
Center for Biotechnology Information mouse genome build #30).
Mapping in the heterogeneous stock indicated that this region contains
only the QTLs analyzed here, due to a contrast between two strains (A/J
and C3H: low EMO) on one hand and the other six strains on the
other (C57BL/6J, DBA/2, I, AKR, RIII and BALB/cJ: high EMO)8,9,28,33.

20.0 T T G A A G T T T A C T A C A G G A T T A G G C G A G C C A T G G T A C A A C G C T
17.6 T T C G A A C T T A G T A C A T G A T T G A G C G A G C C C T T G T G T C A C G C T
13.6 C G C G C A C C A G G C C T G T G A T A G G T A G A C T T C C T C C A C A G A A T C
11.0 T T C G A A C T T A G T A C A T G A T T G A G C G A G C C A T T G T G T C A C G C T
9.8 C G C G C A C C A G G C C T G T G A T A G G T A G A C T T A C T C C A C A G A A T C
7.4 T G C G C A C T T G G T A T G G A G C T A G G C T C G C C C T T G C A C A G A A C C
5.0 T G C G C A C T T G G T A T G G A G C T A G G C T C G C C A T T G C A C A G A A C C
2.7 C G C G C A C C A G G C C T G T G A T T A G G C T C G C C C T T G C A C A G A A C C
2.1 T G C G C A C T T G G T A T G G A G C T A G G C G C G C C C T T G C A C A G A A C C
1.5 C G C G C A C C A G G C C T G T G A T T A G G C T C G C C A T T G C A C A G A A C C
1.4 T T C G A G T T T A C T A C A G G A T T A G G C G A G C C A T G G T A C A A C G C T
1.2 T T G A A G T T T A C T A C A G G A T T A G G C G A G C C A T T G T G T C A C G C T
1.0 T T G A A G T T T A C T A C A G G A C T A G G C G A G C C A T G G T A C A A C G C T
0.7 T T C G A A C T T A G T A C A T G A C T G A G C G A G C C A T T G T G T C A C G C T

AKR T G C G C A C T T G G T A T G G A G C A G G T A G A G C C C T T G T G C A G A A C T
C3H C G C G C A C C A G G C C T G T G A T T A A G C T C C T T C C T C C A T C A C G T C
C57BL/6J T T G A A G T T T A C T A C A G A G C A G A T A G A G C C A T G G T A T C A C G T C
I T T G A A G T T T A C T A C A G G A T A G A T A T C G C C C T T G T A C C A C G T C

Peak 1 Peak 2 Peak 3

Figure 2 Reconstruction of MF1 haplotypes as
inbred strain mosaics. The top part of the figure
shows haplotypes that account for 95% of the
MF1 chromosomal complement. To the left of
each haplotype is its frequency in the population,
expressed as a percentage. Each haplotype is
represented horizontally as a string of sequence
variants at the 42 SNPs used for mapping in the
MF1. The bottom part of the figure shows the
haplotypes of four inbred strains (C3H, AKR,
C57BL/6J and I). The origin of each MF1
haplotype from these inbred strains, as
determined by a dynamic programming algorithm,
is indicated by color coding of each nucleotide
(red for C3H, blue for AKR, yellow for C57BL/6J
and green for I). Blocks of contiguous color in the
MF1 represent unrecombined haplotypes. The
labeled black vertical lines demarcate the 95%
c.i. for the three QTL peaks.
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Genetic dissection of a behavioral quantitative trait locus
shows that Rgs2 modulates anxiety in mice
Binnaz Yalcin1,3, Saffron A G Willis-Owen1,3, Jan Fullerton1, Anjela Meesaq1, Robert M Deacon2,
J Nicholas P Rawlins2, Richard R Copley1, Andrew P Morris1, Jonathan Flint1 & Richard Mott1

Here we present a strategy to determine the genetic basis of variance in complex phenotypes that arise from natural, as opposed
to induced, genetic variation in mice. We show that a commercially available strain of outbred mice, MF1, can be treated as an
ultrafine mosaic of standard inbred strains and accordingly used to dissect a known quantitative trait locus influencing anxiety.
We also show that this locus can be subdivided into three regions, one of which contains Rgs2, which encodes a regulator of
G protein signaling. We then use quantitative complementation to show that Rgs2 is a quantitative trait gene. This combined
genetic and functional approach should be applicable to the analysis of any quantitative trait.

Crosses between inbred strains of mice are frequently used to map
quantitative trait loci (QTLs) that give rise to the genetic component
of quantitative variation in traits of biomedical interest, such as those
underlying susceptibility to depression and anxiety1. It has proven
difficult to identify genes underlying behavioral QTLs: although 94
such QTLs have been reported to exceed a genome-wide significance
threshold, in no case has the responsible gene, or genes, been
identified2. One problem is that each QTL individually makes only
a modest contribution to the phenotype; on average, a detectable
behavioral QTL accounts for B5% of the total phenotypic variance2.

Over the past ten years, anxiety-related QTLs in mice have been
identified on 13 chromosomes3–5. Although the individual effect of
each QTL is small, their detection can be replicated6, and one QTL has
been mapped to a small interval of B1 cM on chromosome 1 (near
145 Mb on the National Center for Biotechnology Information mouse
genome build 30) using a genetically heterogeneous stock of mice7–9.
Despite extensive analysis of the genes and variants at this locus10,
however, the molecular nature of QTLs that influence anxiety-like
behavior in mice remains obscure.

Positional cloning of small-effect QTLs by purely genetic means is
extremely difficult because many recombinants are needed to isolate a
single gene. Genetic mapping has the additional problem that it
locates a functional variant (or variants) rather than a gene. The
positions of genes and sequence variants that affect gene expression do
not always coincide. Functionally important elements have been
discovered far from their cognate genes11, and regulatory elements
for expression of one gene may lie in an intron of another, functionally
unrelated, gene12,13.

Alternative strategies to obtain functional evidence that a gene
contributes to behavioral variation can also be extremely challenging.

In a few cases, the molecular basis of large-effect QTLs (those explain-
ing 40% or more of the phenotypic variance in an intercross) has been
identified by the analysis of gene expression differences14,15, but the
method has so far not been successful when applied to the much more
common small-effect QTLs that are responsible for individual differ-
ences in behavior. Moreover, where cellular processes are causally
remote from the phenotype, as is the case for behavior, expression
differences or altered protein function provide only circumstantial
evidence to implicate a gene as a QTL. Variation in gene expression
is not necessarily translated into behavioral differences, and a gene’s
effect may depend on where and when it is expressed in the brain16.

Two approaches might overcome these problems. First, high-
resolution mapping in outbred populations, taking advantage of
recombination between loci accumulating over many generations,
has been successfully applied to mapping small-effect QTLs in fruit
flies17,18 and humans19–22. We reasoned that a similar strategy might
work in outbred mice.

Second, a method called quantitative complementation testing has
been used to investigate the role of candidate genes in QTL mapping
experiments in fruit flies18,23, and a similar method was used in a
study of a QTL in yeast (reciprocal hemizygosity analysis24). It has not
yet been used in mammals. The method requires no information
about the nature of responsible sequence variants, their mode of
action or their location with respect to the candidate gene, but it does
rely on access to deficiency stocks or recessive mutants. These
resources are now becoming available for mouse genetics.

Here we describe the application of both methods to characterize
the chromosome 1 QTL, and we show that the gene Rgs2, encoding a
regulator of G protein signaling, is a candidate in this region that
modulates variation in anxiety-like behavior.

Published online 17 October 2004; doi:10.1038/ng1450

1Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. 2Department of Experimental Psychology, University of
Oxford, Oxford, UK. 3These authors contributed equally to this work. Correspondence should be addressed to J.F. (jf@well.ox.ac.uk) or R.M. (rmott@well.ox.ac.uk).
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